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ABSTRACT

Steady state anodic voltammograms were measured at a siiver ro-
tating disc electrode in a basic sulfide solution. Analysis of the
voltammograms indicates that the rate determining steps in the dis-
solution of silver are due to a combination of surface chemical re-
action, forming silver sulfide, and the charge transfer-reaction between
silver and silver ion. Kinetic parameters of each step are evaluated
and an I-£ curve is reproduced from these parameters. The wave form is

in good agreement with the voltammogram obtained experimentally.




INTRODUCTION

Although the anodic dissolution of metals, frequently producing
insoluble substances, plays an important role in the process of metal
corrosion, fundamental and kinetic knowledge of such processes has been
accumulated only in recent years. The mechanism of anodic dissolution
contains factors making quantitative measurements difficult, e.g. in-
fluence of crystal structure, adsorption, activity change of adatoms,
volume reactions, passivation due to films, surface diffusion, formation
of nuclei and crystallization [1,2], and hence quantitative descriptions
of such processes have been limited [3-7]. However, to a certain extent
it is possible to neglect some of these effects by controlling the time
scale in measurements such as in AC impedance studies [5,6], in chrono-
potentiometric methods [4] and in steady-state measurements at the
rotating disk electrode (RDE) [3].

Much recent work in this field has been concerned with dissolution
studies of zinc [8] and cadmium [9] in alkaline solutions. They show
contradictory resuits and conditions depending on the investigators and
their experimental methods. To describe anodic dissolution mechanisms
comprehensively, it seems to be necessary to extensively accumulate much
data with respect to many kinds of metals. The present work reports on
the analysis of silver dissolution into sulfide solution as an extention
of a previous study [10].

The previous experiments [10] describe the anodic dissolution.of

silver in basic sulfide solution at a rotating silver-disc electrode and

can be summarized as follows.
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(a) Silver sulfide films produced on the electrode do not block current
through the electrode until the quantity of electricity passed at the
electrocde, Q_ exceeds 8 x 10'2 coulombs cm'2. Thus, anodic currents can
be regarded as steady state currents although <ilver sulfide is accumu-
lated on the electrode surface as the reaction proceeds. The remarks
that fullow address only the case where Q < Q_.

(b) The quantity of electricity passed on deposition of silver sulfide
at the electrode surface, Qa is equal to the gquantity of electricity of
sulfide removed in the stripping process, Qc.

(c) From the dependence of limiting currents on the rotation rate and
zoncentration of sulfide, it was concluded that limiting currents are
controlled by diffusion of sulfide to the electrode.

(d) The potential at which anodic currents begin to flow is -0.78
V(SCE), cathodically shifted from the equilibrium potential of Ag/Ag+ by
1.34v.

(e) Anodic currents less than those on the limitinc current plateau are

1/2
W

kinetically contr.'led; and plots of I < 1Q Vs are non-linear and

1/2 at the foot of the anodic wave.

are also indepeindent of w
Thus, the kinetic behavior represented by (d) and (e), supported by

the rather simple results of (a), (b) and (c), encouraged us to attempt

to elucidate the kinetics of the mechanism in an effort to explain the

shape of the current-potential curve.




EXPERIMENTAL j

Chemicals, apparatus and experimental procedures have been described

elsewhere [10]. Concentrations of sodium sulfide employed were 1.77 x .

4

1074, 3.58 x 1074, 5.31 x 107%, 7.08 x 1074 and .85 x 10°% mol dm™S.

Rotation rates of the silver RDE were varied from 400 rpm to 3600 rpm. '

The potential scan rate was 10 mV s~ . i




RESULTS AND DISCUSSION

An experimental voltammogram is shown in fig. 1 as curve a. As
described in prior work [10], the overall reaction which forms a silver
sulfide films on the electrode is given by

2 Ag + $2- 2 Ag,S + 2 e (1)

This reaction can be divided intuitively into a charge transfer reaction
and a chemical one as follows:

2 (Ag T Ag" +€7) (2)

2 Agt + 7T agys (3)

First we tentatively apply the theory for the anodic dissolution of
mercury into a solution of halide ions, developed by Heyrovsk; and Kdta
[11], to the present system. The theory assumes that anions which
produce sparingly soluble salts diffuse to the electrode and equilibrate
on the electrode surface with metal ions dissolving reversibly from a
metal lattice. This predicts that the rate determining step is not due
to reaction rates but the diffusion of anions from the bulk solution to
the electrode. Then the conditions of the equilibrium in reactions (2)

and (3) are given by

(cag*)s/< = exp ((F/RDIE-E ) (4)
(cagt)s (eg2-) = Ko (5)
(epe-)g/ (62 )/ eyt)g = Ky (6)

. +
where (EA9+)S. (552—)5. (EHS')S’ and (gH+)S are concentration of Ag ,
Sz'. HS™, and H+, respectively, on the electrode surface, ® is the
standard concentration (1 mol dm'?) of silver ion, E°' is the formal

potential of the eqn(2), Esp is the solubility product of Agzs. and K,

T
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is the formation constant of the reaction, 52 + H <« HS . The solution

of the convective diffusion equation at the RDE is, in general,

€ = (1 - 1/1y) (7)

where Cs and c, are analytical concentrations of sulfide 1552- + EHs') at the
electrode and in the bulk solution, respectively, and ld and ] are the
diffusion-controlled current and a current depending on potential,
respectively. This simple expression results from uniform accessibility
of the RDE [12] and holds also for other conditions described below.
From eqns (6) and (7) one can obtain egqn. (8):

(eg2-)g 1+ (gy)g KD = ¢, (1 - /1Y) (8)
Substituting eqn. (4) into egn. (5) and eliminating (cSZ-)S from eqns.
(5) and (8) yields

1=1 (c®)?) exp(-2F(E-E)/RT)}  (9)

Ig 00 - (K sp/Eo
where K sp is an apparent solubility product given by Esp{] + (£H+)s

Ky}. The I-E curve calculated from egn. (9) is shown as curve b in Fig.

50 mo]3 dm-9 (131, (£H+)S =5 x 10-4 mo? dm-3, 5] =

mol dm> [14], and E = 0.555 V (SCE) [15] together with curve a,

1 for §5p=1.6 x 107
1014.0
which is experimental. Curve b is shifted cathodically from curve a by
approximately 50 mV and rises steeply at E = -0.798 V(SCE), ascending
more steeply than curve a to reach the diffusion-controlled current
plateau. Therefore, assuming the establishment of the equilibrium of
reactions (2) and (3) at the electrode surface fails to reproduce the
experimentaily observed curve.

An alternate possibility is to introduce the kinetics of the

charge-transfer process represented by the Butler equation instead of

the Nernst equation. Then reaction (2) is formulated as




exp [-QE(E-EQI)/BI]}
(10)

1= 2°mk 9 (c®

Fak (< exp [(1-)E(E-E /RTY - (g %)

s
where kg is the conditional electrode reaction-rate constant for reac-
tion (2), a is the cathodic charge-transfer coefficient and A is the
surface area of the electrode. Combining eqn. (10) to egns. (5) and (6)
yields
1= 2 Fak® (¢ exp [(1-a)F(E-E® )/RT)
— ...—_C — — — PRSI
' 1/2 _ _g0'
- (Kplg/eg(1g-)) 7% exp [-of (E-E" )/RT]) (1)
which is a cubic equation with respect to I. Values of ] computed

numerically for 52 = 2.3 x 10'5 cm s-] and o=1 were plotted against

e

potentials in Fig. 1 (curve c¢). The values of k. and o referred here

are those which will be determined in later discussion. Curve c still
. _ o . 8,2
has a sharp rise at £, = -0.798 V equal to E +(51/2£)1n(§5p/go(g )7) and
is very similar to curve b at the foot of the wave. Slopes of curves b
and ¢ at E=E_ are given by 2F1/RT and 2 FeAKS/[RT:(c (cg)z/x' y(1-a)/2
-~ =¢ 9 yoellg/ oo - —' ="' ~sp

8 R . . s
+ FAk /ld,], respectively, as a result of differentiating eqns. (9) and
(11). Obviously they do not become zero for any choice of 53 and o
within reasonable physical meaning. Further efforts to force curve c to
fit curve a for several values of 53 and a, in terms of numerical
calculation, failed. Therefore, it is concluded that a smooth increase
in the current does not result solely from kinetics of the charge transfer
but some other chemical reaction observed experimentally in a.

Since the current is proportional to a rate of a chemical reaction,
the following equation can be written assuming constant concentration of

sulfide at the surface, as:

L=k (gagt)s" (12)
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In order to find the order, r, of the reaction, the logarithm of current
values at the foot of the kinetically controlled waves were plotted
against £ (Fig. 2). This is equivalent to assuming that the charge
transfer process is reversible at the foot of the wave but that the
current is limited by an irreversible chemical reaction which (see
(below) is a surface reaction. Values of E at the foot of the wave
determine the concentration of silver ions at the electrode surface
(egn. (4)) because the charge transfer kinetics have little influence on
currents at the foot of the waves, as discussed in the previous section.

Then egn. (12) becomes

In(1/k ) = rEE/RT (13)
Values of r=2 were obtained from the plots and are tabulated in Table 1
for five concentrations of sulfide solutions. Hence eqn. (12) can be
rewritten, combined with reaction (3), as

[ = FAK (

- = EA9+)§ (e2-)g (14)

Since the dimensions of k are mes” M2

, when M is molarity, k is the
rate constant of a surface reaction. The conclusion that reaction (3)
is a surface reaction is further supported by the fact that silver
sulfide does not escape from the electrode surface to the bulk solution
during anodic polarization (10) see above.

If reaction (3) were controlled by a volume reaction in place of a
surface reaction, the order r should be 1.5. This can be demonstrated
as follows. The mass transport equation for the case of fast chemical
reactions within the reaction layer (0 < x < u) is given by [12]
Pepgt/a8 = k (g ly2n) (15)

At the foot of the anodic wave, the region being considered here, the

™
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concentration of sulfide ion is constant in the vicinity o the electrode,

which is expressed as ( )p. Multiplying dgAg+/d5 on both sides and

g2
integrating the resulting equation from 0 to u yields

(WEP = (2/3) k' Do e2-), (gh%)]
which would yield a reaction order of 1.5. This is obviously inconsis-
tent with the experimentally determined value of r. It has been reported
by Bockris et al [16] that a dissolution-precipitation mechanism of
calomel formation on the mercury electrode contains the rate determining
step of a homogeneous chemical reaction of disproportionation of the
H92C1+ ion.

The expression for the current complicated by the surface-chemical
reaction can be derived by substituting eqns. (4) and (7) into eqn. (14)
if the charge transfer step takes place reversibly. Then, it becomes

In(1/14-1)) = In(
Plots of 1n(1/1d-1) against E for the foot of the wave are shown in Fig.

G 2 (<N}
FAkc (c”)%/1,) + 2F(E-E )/RT (16)
3. Llinearity is observed at the foot of the wave ard slopes of the
lines are equal to 2F/RT and values of FAkco/Id can be evaluated from

the intercept through use of £ = 0.555 V. Taking into account that Iy
2/3v-1/6w1/2

1/2

is given by 2 x 6.2 x 1074 FAc D [12], we notice that

, where w is the rotation rate
-1/2

FAkc /ld should be proportional to w

(radian s']) of the RDE. Variation of FAkc /ld with w is shown in

-1/221/6

Fig. 4. The slope of the lire is 0.807 D k and hence k = 2.0 x

1

1043 cm 5'1 M'z. 1f the units of k are converted into cm s ' per atom,

-1

k is given by 5.6 x 10'5 cm s ' per atom, which corresponds to a con-

ditional electrode reaction rate constant for the totally irreversible

system. This linearity also demonstrates that the reaction order of SZ'




=10~

is unity, since if ¢, were other than first order, non-linearity would
result in these plots as a result of the various concentrations of
sulfide employed.

Curve d in Fig. 1 is the wave calculated from eqn. (16) with the
value of k thus obtained. 1t overlaps the experimental curve a, at the
lower part of the wave while deviating from it at the upper part.

As described previously, consideration of the kinetics of charge

transfer contributes to the shape of the upper part of the wave, hence

the deviation of curve d from curve a can be attributed to the kinetics
of the charge transfer. In fact, the charge transfer of Ag/Ag+ takes
place quasi-reversibly [17] and hence this effect can be taken into

account.

To derive the expression for a current controlled by both the
surface chemical reaction (at the foot of the wave) and the charge
transfer reaction (at the upper portion of the wave), we combine egs.

(7), (10) and (14) by eliminating (9A9+)s as well as (952-)5. By simple

calculation, we have
e

In bk " = - (T-0)F(E-E°")/RT (17)
where
. 8 1/2 o
H= (2FA/1) [c7 - {(Ly/FRke )(1/(14-1))}7° exp{-F(E-E°")/RT}]

(18)
A1l of the variables involved in H are known since k has already been i
evaluated. Plots of In (ﬂ/cm']s) vs. E in Fig. 5 shows that In (H/cm i

]s) is independent of the variation of E. This requires, (Eq. 16) that 1

8- 1

-5 -
L9¢ 2.3 x 10 em s

a=1, and results in a value of Literature values

of the kinetic parameters are k =2.3 x 1073 em s ', a=0.55 [18] and

oo}
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gg=].5 x 1074 cm s [19] where gg values have been evaluated from the
exchange densities and o has been assumed to be 0.5.

The result, a=1, implies that all the electrical part of the
activation energy for the charge transfer contributes to the reduction
of silver ions to silver atoms while the oxidation of silver atoms
proceeds by surmounting the energy barrier which is associated only with
structural chemical changes [20]. Therefore the reduction takes place
as if it were a chemical reaction independent of applied potential.

This is equivalent to the intuitive reaction model that sulfide ions at
the electrode surface stimulate silver atoms to make the charge transfer
occur and then form silver sulfide as if they plucked silver atoms from
the silver lattice. In other words, the chemical affinity of sulfide
and silver overcomes predominantly the strength of electric field due to
the applied potential difference in the double layer.

Voltammogram calculated from eqns. (17) and (18) by means of the
iterated numerical computation is drawn in Fig. 1 as curve e, and is in
excellent agreement with the experimentally obtained curve a.

Since the major S-containing anion in 0.2 M NaOH solution is HS~
((EHS'/ESZ'):7) it may be necessary to take into account the dissociation

2- 2 would then correspond to the electro-

rate of HS™ into H' and S
active species in the sense of a preceeding chemical reaction. Then the
thickness of the reaction layer is defined as u = /Q/gf[H+] [21], where
k¢ is the formation rate constant of HS™ from H' and 527, Thus the

dissociation rate, Vys the change in the number of mole of HS™ within

the reaction layer is given by !i'= k’c”S- Au, where Ed is the dissociation

rate constant. Since the rate of formation of weak acids are, in general,




-12~

controlled by diffusion, the rate constant may be estimated as 10]] 3

mol']dm3 [20]. Then v, becomes 3 x 102 mol ! by use of formation

-1, 3

constant of HS , 10]4 mol~ dm”. On the other hand, the rate of the

surface reaction, Voo is equal to I/f, by eqn. (14) and is less than
2 x 1078 !

mol s~ '. Comparison of v, with v, thus makes it unlikely that

kinetics of dissociation of HS participate in the overall reaction.

—— i L



-13-

CONCLUSTON

Formation of silver sulfide from silver and sulfide can be separ-
ated formally into two reactions (2) and (3). We cannot differentiate
if reactions (2) and (3) really take place stepwise or not. Since the
kinetics equations that we know is for charge transfer reaction (2) or
chemical reaction (3), combining the former with the latter allows us to
discuss the overall reaction quantitatively.

If reactions (2) and (3) are in equilibrium, the current is ex-
pressed by eqn. (9) resulting in the calculated curve b of Fig. 1. The
wave form controlled by the charge transfer step in the chemical equi-
librium is given by curve ¢. Both curves are different from experi-
mental curve a in overall morphology. It was found in Fig, 2 that the
stoichiometric number of reaction (3) was 2, indicating the surface
chemical reaction. The surface chemical reaction rate constant was
obtained in Fig. 3. This permitted the calculation of the I-E curve of
curve d, Fig. 1. These considerations, plus the cornsideration of the
kinetics of reaction (2) results in curve e, which is consistent with
the experimentally obtained curve a. [t seems to us that the above
procedures should play a vital role in the analysis of anodic dissolution
waves for any other systems.

The significant results of examining the 1-E curves are that reac-
tion (3) occurs on the electrode surface and that the charge transfer
coefficient is equal to unity. This not only accounts for features (a)-

(e) of the I-E curves described in the Introduction but also provides us

with a profile of the activation potential energy for reaction (1).
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Table 1.

Reaction order, r, for silver ion obtained from plots of 1n(1/10'6A) against

E.

3

x 10%/mo1 dm” reaction order, r

cLﬂ

1.77 1.9
3.54 1.89
5.3 2.06
7.08 2.06
8.85 1.9

average 1.97
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Anodic voltammograms at the silver RDE. (a): experimentally
obtained curve, (b): calculated from egn. (7), (c): calculated
from egn. (9), (d): calculated from eqn. (13) and (e): calcu-
lated from eqns. (14) and (15) under the conditions of & ° 5.31

x 1074 mol dn™3, rotation speed: 1600 rpm and I, = 0.725 mA.

4 3

Variations of 1n(1/107%A) with E in the 5.31 x 10°% mo1 dm™> sodium-
sulfide solution at rotation speeds of (4): 400 rpm, (©): 900

rpm, (©): 1600 rpm, (Q): 2500 rpm and (0): 3600 rpm.

3

Plots of 1n(1/(I-1)) vs. E in the 5.31 x 107% mol dn™> sodium-

sulfide solution at rotation speeds of (a): 400 rpm, (©): 900

rpm, (€): 1600 rpm, (Q): 2500 rpm and (0): 3600 rpm.

Dependence of ggofﬁ/ld on inverse square roots of rotation speeds

in (A): 1.77, (©): 3.54, (Q): 5.31, (Q): 7.08 and (0): 8.85

3

X 10'4 mol dm ° sodium sulfide solutions.

3

Variations of 1n(ﬂ/cm']s) with £ in 5.31 x 107 mo1 dm™> sodium

sulfide solution at rotation speeds of (A): 400 rpm, (©): 900 rpm,

(€): 1600 rpm, (Q): 2500 rpm and (0): 3600 rpm.
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